Skip to main content
eScholarship
Open Access Publications from the University of California

College of Chemistry

UC Berkeley

This series is automatically populated with publications deposited by UC Berkeley College of Chemistry Department of Chemical and Biomolecular Engineering researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Efficient separation of carbon dioxide and methane in high-pressure and wet gas mixtures using Zr-MOF-808

Efficient separation of carbon dioxide and methane in high-pressure and wet gas mixtures using Zr-MOF-808

(2025)

The capture and separation of carbon dioxide (CO2) has been the focus of a plethora of research in order to mitigate its emissions and contribute to global development. Given that CO2 is commonly found in natural gas streams, there have been efforts to seek more efficient materials to separate gaseous mixtures such as CO2/CH4. However, there are only a few reports regarding adsorption processes within pressurized systems. In the offshore scenario, natural gas streams still exhibit high moisture content, necessitating a greater understanding of processes in moist systems. In this article, a metal-organic framework synthesis based on zirconium (MOF-808) was carried out through a conventional solvothermal method and autoclave for the adsorption of CO2 and CH4 under different temperatures (45–65 °C) and pressures up to 100 bar. Furthermore, the adsorption of humid CO2 was evaluated using thermal analyses. The MOF-808 synthesized in autoclave showed a high surface area (1502 m2/g), a high capacity for CO2 adsorption at 50 bar and 45 °C and had a low selectivity to capture CH4 molecules. It also exhibited a fine stability after five cycles of CO2 adsorption and desorption at 50 bar and 45 °C − as confirmed by structural post-adsorption analyses while maintaining its adsorption capacity and crystallinity. Furthermore, it can be observed that the adsorption capacity increased in a humid environment, and that the adsorbent remained stable after adsorption cycles in the presence of moisture. Finally, it was possible to confirm the occurrence of physisorption processes through nuclear magnetic resonance (NMR) analyses, thus validating the choice of mild temperatures for regeneration and contributing to the reduction of energy consumption in processing plants.

Cover page of Particle on a Rod: Surface-Tethered Catalyst on CdS Nanorods for Enzymatically Active Nicotinamide Cofactor Generation

Particle on a Rod: Surface-Tethered Catalyst on CdS Nanorods for Enzymatically Active Nicotinamide Cofactor Generation

(2024)

The photochemical generation of nicotinamide cofactor 1,4-NADH, facilitated by inorganic photosensitizers, emerges as a promising model system for investigating charge transfer phenomena at the interface of semiconductors and bacteria, with implications for enhancing photosynthetic biohybrid systems (PBSs). However, extant semiconductor nanocrystal model systems suffer from achieving optimal conversion efficiency under visible light. This study investigates quasi-one-dimensional CdS nanorods as superior light absorbers, surface modified with catalyst Cp*Rh(4,4'-COOH-bpy)Cl2 to produce enzymatically active NADH. This model subsystem facilitates easy product isolation and achieves a turnover frequency (TOF) of 175 h-1, one of the highest efficiencies reported for inorganic photosensitizer-based nicotinamide cofactor generation. Charge transfer kinetics, fundamental for catalytic solar energy conversion, range from 106 to 108 s-1 for this system highlighting the superior electron transfer capabilities of NRs. This model ensures efficient cofactor production and offers critical insights into advancing systems that mimic natural photosynthesis for sustainable solar-to-chemical synthesis.

Cover page of 3D Lead‐Organoselenide‐Halide Perovskites and their Mixed‐Chalcogenide and Mixed‐Halide Alloys

3D Lead‐Organoselenide‐Halide Perovskites and their Mixed‐Chalcogenide and Mixed‐Halide Alloys

(2024)

Abstract: We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se−), which occupies both the X− and A+ sites in the prototypical ABX3 perovskite. The new organoselenide‐halide perovskites: (SeCYS)PbX2 (X=Cl, Br) expand upon the recently discovered organosulfide‐halide perovskites. Single‐crystal X‐ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide‐halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid‐state 77Se and 207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2 largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable band gap decrease. Optical absorbance measurements indeed show band gaps of 2.07 and 1.86 eV for (SeCYS)PbX2 with X=Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the band gap from 1.86 to 2.31 eV–straddling the ideal range for tandem solar cells or visible‐light photocatalysis. The comprehensive description of the average and local structures, and how they can fine‐tune the band gap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid‐state and organo‐main‐group chemistry.

Cover page of 3D Lead‐Organoselenide‐Halide Perovskites and their Mixed‐Chalcogenide and Mixed‐Halide Alloys

3D Lead‐Organoselenide‐Halide Perovskites and their Mixed‐Chalcogenide and Mixed‐Halide Alloys

(2024)

We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se-), which occupies both the X- and A+ sites in the prototypical ABX3 perovskite. The new organoselenide-halide perovskites: (SeCYS)PbX2 (X=Cl, Br) expand upon the recently discovered organosulfide-halide perovskites. Single-crystal X-ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide-halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid-state 77Se and 207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2 largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable band gap decrease. Optical absorbance measurements indeed show band gaps of 2.07 and 1.86 eV for (SeCYS)PbX2 with X=Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the band gap from 1.86 to 2.31 eV-straddling the ideal range for tandem solar cells or visible-light photocatalysis. The comprehensive description of the average and local structures, and how they can fine-tune the band gap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid-state and organo-main-group chemistry.

Cover page of Discerning molecular-level CO 2 adsorption behavior in amine-modified sorbents within a controlled CO 2 /H 2 O environment towards direct air capture

Discerning molecular-level CO 2 adsorption behavior in amine-modified sorbents within a controlled CO 2 /H 2 O environment towards direct air capture

(2024)

Sorbents designed for direct air capture (DAC) play a crucial role in the pursuit of achieving net-zero carbon dioxide emissions. This study elucidates CO2 adsorption from dilute, humidified CO2 streams onto an amine-modified benchmark DAC adsorbent via solid-state NMR spectroscopy. Various NMR techniques, including 1D 1H MAS, 13C MAS, 2D 1H-13C HETCOR NMR, and 1H R2 and R1ρ relaxometry reveal the impact of CO2 partial pressure and H2O on CO2 adsorption behavior. We find that CO2 concentration governs the stepwise formation of ammonium carbamate, carbamic acid, and physisorbed CO2, where relative humidity (RH) at a desired low (<400 ppm) CO2 loading affects total CO2 uptake. The relaxation studies reveal the cooperative or competitive nature of H2O-CO2 sorption in CO2-dilute humid gas, and in particular polymer swelling upon humidification. From those results, we demonstrate that the observed absorption capacity enhancement by humidity is caused by pore opening due to sorbent swelling, and not by bicarbonate formation. This NMR-discerned speciation provides insights into sorption behavior at different RHs in dilute CO2 gas streams, simulating real-world atmospheric conditions, and governs the design of efficient and adaptable material-process combinations for solid sorbent DAC.

Cover page of Neurospora intermedia from a traditional fermented food enables waste-to-food conversion.

Neurospora intermedia from a traditional fermented food enables waste-to-food conversion.

(2024)

Fungal fermentation of food and agricultural by-products holds promise for improving food sustainability and security. However, the molecular basis of fungal waste-to-food upcycling remains poorly understood. Here we use a multi-omics approach to characterize oncom, a fermented food traditionally produced from soymilk by-products in Java, Indonesia. Metagenomic sequencing of samples from small-scale producers in Western Java indicated that the fungus Neurospora intermedia dominates oncom. Further transcriptomic, metabolomic and phylogenomic analysis revealed that oncom-derived N. intermedia utilizes pectin and cellulose degradation during fermentation and belongs to a genetically distinct subpopulation associated with human-generated by-products. Finally, we found that N. intermedia grew on diverse by-products such as fruit and vegetable pomace and plant-based milk waste, did not encode mycotoxins, and could create foods that were positively perceived by consumers outside Indonesia. These results showcase the traditional significance and future potential of fungal fermentation for creating delicious and nutritious foods from readily available by-products.

Cover page of Mechanochemically accelerated deconstruction of chemically recyclable plastics

Mechanochemically accelerated deconstruction of chemically recyclable plastics

(2024)

Plastics redesign for circularity has primarily focused on monomer chemistries enabling faster deconstruction rates concomitant with high monomer yields. Yet, during deconstruction, polymer chains interact with their reaction medium, which remains underexplored in polymer reactivity. Here, we show that, when plastics are deconstructed in reaction media that promote swelling, initial rates are accelerated by over sixfold beyond those in small-molecule analogs. This unexpected acceleration is primarily tied to mechanochemical activation of strained polymer chains; however, changes in the activity of water under polymer confinement and bond activation in solvent-separated ion pairs are also important. Together, deconstruction times can be shortened by seven times by codesigning plastics and their deconstruction processes.

Cover page of Evaluating Cryo‐TEM Reconstruction Accuracy of Self‐Assembled Polymer Nanostructures

Evaluating Cryo‐TEM Reconstruction Accuracy of Self‐Assembled Polymer Nanostructures

(2024)

Cryogenic transmission electron microscopy (cryo-TEM) combined with single particle analysis (SPA) is an emerging imaging approach for soft materials. However, the accuracy of SPA-reconstructed nanostructures, particularly those formed by synthetic polymers, remains uncertain due to potential packing heterogeneity of the nanostructures. In this study, the combination of molecular dynamics (MD) simulations and image simulations is utilized to validate the accuracy of cryo-TEM 3D reconstructions of self-assembled polypeptoid fibril nanostructures. Using CryoSPARC software, image simulations, 2D classifications, ab initio reconstructions, and homogenous refinements are performed. By comparing the results with atomic models, the recovery of molecular details is assessed, heterogeneous structures are identified, and the influence of extraction location on the reconstructions is evaluated. These findings confirm the fidelity of single particle analysis in accurately resolving complex structural characteristics and heterogeneous structures, exhibiting its potential as a valuable tool for detailed structural analysis of synthetic polymers and soft materials.

Cover page of Verazine biosynthesis from simple sugars in engineered Saccharomyces cerevisiae

Verazine biosynthesis from simple sugars in engineered Saccharomyces cerevisiae

(2024)

Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.g., cyclopamine); yet many of the ≥697 known steroidal alkaloid natural products remain underutilized as drugs because it can be challenging to scale their biosynthesis in their producing organisms. Cyclopamine is a steroidal alkaloid produced by corn lily (Veratrum spp.) plants, and it is an inhibitor of the Hedgehog (Hh) signaling pathway. Therefore, cyclopamine is an important drug candidate/lead to treat human diseases that are associated with dysregulated Hh signaling, such as basal cell carcinoma and acute myeloid leukemia. Cyclopamine and its semi-synthetic derivatives have been studied in (pre)clinical trials as Hh inhibitor-based drugs. However, challenges in scaling the production of cyclopamine have slowed efforts to improve its efficacy and safety profile through (bio)synthetic derivatization, often limiting drug development to synthetic analogs of cyclopamine such as the FDA-approved drugs Odomzo, Daurismo, and Erivedge. If a platform for the scalable and sustainable production of cyclopamine were established, then its (bio)synthetic derivatization, clinical development, and, ultimately, widespread distribution could be accelerated. Ongoing efforts to achieve this goal include the biosynthesis of cyclopamine in Veratrum plant cell culture and the semi-/total chemical synthesis of cyclopamine. Herein, this work advances efforts towards a promising future approach: the biosynthesis of cyclopamine in engineered microorganisms. We completed the heterologous microbial production of verazine (biosynthetic precursor to cyclopamine) from simple sugars (i.e., glucose and galactose) in engineered Saccharomyces cerevisiae (S. cerevisiae) through the inducible upregulation of the native yeast mevalonate and lanosterol biosynthetic pathways, diversion of biosynthetic flux from ergosterol (i.e., native sterol in S. cerevisiae) to cholesterol (i.e., biosynthetic precursor to verazine), and expression of a refactored five-step verazine biosynthetic pathway. The engineered S. cerevisiae strain that produced verazine contains eight heterologous enzymes sourced from seven different species. Importantly, S. cerevisiae-produced verazine was indistinguishable via liquid chromatography-mass spectrometry from both a commercial standard (Veratrum spp. plant-produced) and Nicotiana benthamiana-produced verazine. To the best of our knowledge, this is the first report describing the heterologous production of a steroidal alkaloid in an engineered yeast. Verazine production was ultimately increased through design-build-test-learn cycles to a final titer of 83 ± 3 μg/L (4.1 ± 0.1 μg/g DCW). Together, this research lays the groundwork for future microbial biosynthesis of cyclopamine, (bio)synthetic derivatives of cyclopamine, and other steroidal alkaloid natural products.

  • 1 supplemental PDF