Skip to main content
eScholarship
Open Access Publications from the University of California

Earth and Planetary Science - Open Access Policy Deposits

This series is automatically populated with publications deposited by UC Berkeley Department of Earth and Planetary Science researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Experimental determination of hydrogen isotopic equilibrium in the system H2O(l)-H2(g) from 3 to 90 °C

Experimental determination of hydrogen isotopic equilibrium in the system H2O(l)-H2(g) from 3 to 90 °C

(2025)

Molecular hydrogen (H2) is found in a variety of settings on and in the Earth from low-temperature sediments to hydrothermal vents, and is actively being considered as an energy resource for the transition to a green energy future. The hydrogen isotopic composition of H2, given as D/H ratios or δD, varies in nature by hundreds of per mil from ∼−800 ‰ in hydrothermal and sedimentary systems to ∼+450 ‰ in the stratosphere. This range reflects a variety of processes, including kinetic isotope effects associated with formation and destruction and equilibration with water, the latter proceeding at fast (order year) timescales at low temperatures (<100 °C). At isotopic equilibrium, the D/H fractionation factor between liquid water and hydrogen (DαH2O(l)-H2(g)) is a function of temperature and can thus be used as a geothermometer for H2 formation or re-equilibration temperatures. Multiple studies have produced theoretical calculations for hydrogen isotopic equilibrium between H2 and water vapor. However, only three published experimental calibrations used in geochemistry exist for the H2O-H2 system: two between 51 and 742 °C for H2O(g)-H2(g) (Suess, 1949; Cerrai et al., 1954), and one in the H2O(l)-H2(g) system for temperatures <100 °C (Rolston et al., 1976). Despite these calibrations existing, there is uncertainty on their accuracy at low temperatures (<100 °C; e.g., Horibe and Craig, 1995). Here we present a new experimental calibration of the equilibrium hydrogen isotopic fractionation factor for liquid water and molecular hydrogen from 3 to 90 °C. Equilibration was achieved using platinum catalysts and verified via experimental bracketing by approaching final values of DαH2O(l)-H2(g) at a given temperature from both higher (top-bracket) and lower (bottom-bracket) initial Dα values. Our calibration yields the following equation: [Formula presented] Where T is in Kelvin. We find that our calibrations differ from prior experimental calibrations by, on average, up to 20 ‰ and prior theoretical results by up to, on average, 25 ‰. Good agreement with theoretical results (<11 ‰ differences) is found for calculations that consider both anharmonic effects and the Diagonal Born-Oppenheimer correction.

Cover page of Building better biochronology: New fossils and 40Ar/39Ar radioisotopic dates from Central Anatolia.

Building better biochronology: New fossils and 40Ar/39Ar radioisotopic dates from Central Anatolia.

(2025)

Türkiyes geographic position between Europe, Asia, and Africa gives it pivotal importance for understanding the local, interregional, and intercontinental dynamics of Neogene vertebrate evolution. Although rich in vertebrate fossil deposits spanning the Middle and Late Miocene, associated geochronology has been limited by the lack of available volcanic materials that allow radioisotopic dating and geochemical correlation. As a result, calibrating mammalian evolution has been largely restricted to the semicircular application of paleomagnetic inferences combined with temporally ill-constrained and geographically remote biochronological deductions. For example, fossils from three Greek localities and one Anatolian locality assigned to the primate genus Ouranopithecus lack datable samples, leaving its ages poorly constrained. Chronological calibration based on the 40Ar/39Ar results reported here demonstrates how a fauna-focused, precision geochronology can enhance a better understanding of evolving species lineages and the ecosystems they comprise.

Cover page of Co‐Occurring Atmospheric Features and Their Contributions to Precipitation Extremes

Co‐Occurring Atmospheric Features and Their Contributions to Precipitation Extremes

(2025)

Object-based identification algorithms for atmospheric features are commonly utilized to attribute global precipitation. This study employs a systematic approach to examine feature co-occurrences and their relationships to mean and extreme precipitation. Four features are identified using existing data sets for atmospheric rivers (ARs), mesoscale convective systems (MCSs), low-pressure systems (LPSs), and fronts (FTs). Often, a single atmospheric phenomenon satisfies the criteria set by multiple feature identification algorithms, yielding an association between precipitation and multiple features. Over the extra-tropics, the number of features attributed to a single event typically increases with precipitation intensity. Over two-thirds of the precipitation is from co-occurring features, with a considerable fraction related to AR-FT co-occurrences. Over the tropics, about one-quarter of precipitation is associated with co-occurring features, with LPS-MCS co-occurrences contributing substantially in monsoon regions. MCSs are the leading single-feature contributors over tropical land and oceans. In the extra-tropics, FTs, ARs, and their co-occurrences account for over half of the total precipitation over oceans. AR-FT-MCS and FT-MCS co-occurrences contribute to extremes (precipitation exceeding the 95th percentile) over both oceans (over 30%) and land (over 20%). Any combination of features involving MCSs shows a larger contribution to high percentiles of precipitation intensity. A case analysis indicates that AR-FT-MCS co-occurrences exhibit convective instability and deep vertical motion, suggesting that the feature trackers and reanalysis are capturing physics relevant to both convective and frontal systems. The results here emphasize the need for simultaneous identifications of multiple features when attributing precipitation to atmospheric phenomena.

Cover page of Ancient ocean coastal deposits imaged on Mars.

Ancient ocean coastal deposits imaged on Mars.

(2025)

The northern lowlands of early Mars could have contained a significant quantity of liquid water. However, the ocean hypothesis remains controversial due to the lack of conclusive evidence from the Martian subsurface. We use data from the Zhurong Rover Penetrating Radar on the southern Utopia Planitia to identify subsurface dipping reflectors indicative of an ancient prograding shoreline. The reflectors dip unidirectionally with inclinations in the range 6° to 20° and are imaged to a thickness of 10 to 35 m along an uninterrupted 1.3 km northward shoreline-perpendicular traverse. The consistent dip inclinations, absence of dissection by fluvial channels along the extended traverse, and low permittivity of the sediments are consistent with terrestrial coastal deposits-and discount fluvial, aeolian, or magmatic origins favored elsewhere on Mars. The structure, thickness, and length of the section support voluminous supply of onshore sediments into a large body of water, rather than a merely localized and short-lived melt event. Our findings not only provide support for the existence of an ancient Martian ocean in the northern plains but also offer crucial insights into the evolution of the ancient Martian environment.

Cover page of Marine sulphate captures a Paleozoic transition to a modern terrestrial weathering environment.

Marine sulphate captures a Paleozoic transition to a modern terrestrial weathering environment.

(2025)

The triple oxygen isotope composition of sulphate minerals has been used to constrain the evolution of Earths surface environment (e.g., pO2, pCO2 and gross primary productivity) throughout the Proterozoic Eon. This approach presumes the incorporation of atmospheric O2 atoms into riverine sulphate via the oxidative weathering of pyrite. However, this is not borne out in recent geological or modern sulphate records, where an atmospheric signal is imperceptible and where terrestrial pyrite weathering occurs predominantly in bedrock fractures that are physically more removed from atmospheric O2. To better define the transition from a Proterozoic to a modern-like weathering regime, here we present new measurements from twelve marine evaporite basins spanning the Phanerozoic. These data display a step-like transition in the triple oxygen isotope composition of evaporite sulphate during the mid-Paleozoic (420 to 387.7 million years ago). We propose that the evolution of early root systems deepened the locus of pyrite oxidation and reduced the incorporation of O2 into sulphate. Further, the early Devonian proliferation of land plants increased terrestrial organic carbon burial, releasing free oxygen that fueled increased redox recycling of soil-bound iron and resulted in the final rise in pO2 to modern-like levels.

Cover page of Author Correction: A map of the rubisco biochemical landscape

Author Correction: A map of the rubisco biochemical landscape

(2025)

Correction to: Naturehttps://doi.org/10.1038/s41586-024-08455-0 Published online 22 January 2025 In the version of the article initially published, the affiliations of Hana A. Chang (Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA) and Ron Milo (Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel) were incorrect and have now been amended in the HTML and PDF versions of the article.

Cover page of Efficient hybrid numerical modeling of the seismic wavefield in the presence of solid-fluid boundaries.

Efficient hybrid numerical modeling of the seismic wavefield in the presence of solid-fluid boundaries.

(2025)

Applying full-waveform methods to image small-scale structures of geophysical interest buried within the Earth requires the computation of the seismic wavefield over large distances compared to the target wavelengths. This represents a considerable computational cost when using state-of-the-art numerical integration of the equations of motion in three-dimensional earth models. Box Tomography is a hybrid method that breaks up the wavefield computation into three parts, only one of which needs to be iterated for each model update, significantly saving computational time. To deploy this method in remote regions containing a fluid-solid boundary, one needs to construct artificial sources that confine the seismic wavefield within a small region that straddles this boundary. The difficulty arises from the need to combine the solid-fluid coupling with a hybrid numerical simulation in this region. Here, we report a reconciliation of different displacement potential expressions used for solving the acoustic wave equation and propose a unified framework for hybrid simulations. This represents a significant step towards applying Box Tomography in arbitrary regions inside the Earth, achieving a thousand-fold computational cost reduction compared to standard approaches without compromising accuracy. We also present examples of benchmarks of the hybrid simulations in the case of target regions at the ocean floor and the core-mantle boundary.

Cover page of Ensemble Monte Carlo calculations with five novel moves

Ensemble Monte Carlo calculations with five novel moves

(2025)

We introduce five novel types of Monte Carlo (MC) moves that brings the number of moves of ensemble MC calculations from three to eight. So far such calculations have relied on affine invariant stretch moves that were originally introduced by Christen (2007) [8], walk moves by Goodman and Weare (2010) [16] and quadratic moves by Militzer (2023) [31,32]. Ensemble MC methods have been very popular because they harness information about the fitness landscape from a population of walkers rather than relying on expert knowledge. Here we modified the affine method and employed a simplex of points to set the stretch direction. We adopt the simplex concept to quadratic moves. We also generalize quadratic moves to arbitrary order. Finally, we introduce directed moves that employ the values of the probability density while all other types of moves rely solely on the location of the walkers. We apply all algorithms to the Rosenbrock density in 2 and 20 dimensions and to the ring potential in 12 and 24 dimensions. We evaluate their efficiency by comparing error bars, autocorrelation time, travel time, and the level of cohesion that measures whether any walkers were left behind. Our code is open source.

Cover page of Atmospheric River Frequency‐Category Characteristics Shape U.S. West Coast Runoff

Atmospheric River Frequency‐Category Characteristics Shape U.S. West Coast Runoff

(2025)

This study investigates the factors influencing runoff response to atmospheric rivers (ARs) over the U.S. West Coast. We focused on runoff time series variations impacted by AR characteristics (e.g., category and frequency) and land preconditions during Northern Hemisphere cool seasons in the period of 1940–2023. Results show that high-category ARs significantly increase local runoff with higher hourly precipitation rates leading to a greater incremental rate and peak runoff. Extreme runoff increases greatly with the AR category with an increase rate up to 12.5 times stronger than non-extreme runoff. Besides the AR category, land preconditions such as soil moisture and snowpack also play crucial roles in modulating runoff response. We found that runoff induced by weak-category ARs is more sensitive to land preconditions than high-category ARs, with high peak runoff occurring when soil is nearly saturated. Additionally, more than 50% of high-peak-runoff events in snow-covered grid cells are associated with rain-on-snow events particularly for the events associated with weaker ARs. Regression analysis reveals that AR precipitation and land preconditions jointly influence runoff, emphasizing the importance of including soil moisture and snowpack levels in AR impact assessments. The study also highlights the intensified runoff response to back-to-back ARs with short intervals, which may become more frequent with climate warming, posing increased flood risks via facilitating wet soil conditions. Our findings have significant implications for AR risk predictions and the development of prediction models for AR-induced runoff.

Cover page of A map of the rubisco biochemical landscape.

A map of the rubisco biochemical landscape.

(2025)

Rubisco is the primary CO2-fixing enzyme of the biosphere1, yet it has slow kinetics2. The roles of evolution and chemical mechanism in constraining its biochemical function remain debated3,4. Engineering efforts aimed at adjusting the biochemical parameters of rubisco have largely failed5, although recent results indicate that the functional potential of rubisco has a wider scope than previously known6. Here we developed a massively parallel assay, using an engineered Escherichia coli7 in which enzyme activity is coupled to growth, to systematically map the sequence-function landscape of rubisco. Composite assay of more than 99% of single-amino acid mutants versus CO2 concentration enabled inference of enzyme velocity and apparent CO2 affinity parameters for thousands of substitutions. This approach identified many highly conserved positions that tolerate mutation and rare mutations that improve CO2 affinity. These data indicate that non-trivial biochemical changes are readily accessible and that the functional distance between rubiscos from diverse organisms can be traversed, laying the groundwork for further enzyme engineering efforts.