Skip to main content
Open Access Publications from the University of California


The goals of the Department of Microbiology and Plant Pathology are to conduct research on the basic biology of plant pathogens and microbes, to develop methods for the management of microbial diseases of plants and other organisms, to provide a quality education to our students; and be a repository of expert advice on plant diseases and microbiology to the citizens of California and the world.

Our department has its roots in the Citrus Experiment Station, which was established in Riverside in 1905. Our department is also the basis of the International Organization of Citrus Virologists (IOCV). IOCV was formed during the first international conference on citrus virus diseases held at Riverside in 1957. Although the department has maintained strength in the study of diseases of citrus, the scope has expanded to include concentrations in numerous other plant diseases as well as many sub-disciplines of microbiology. Represented among our faculty are experts in the fields of genetics, genomics, bioinformatics, molecular biology, cell biology, biochemistry, ecology, evolutionary biology, and traditional aspects of disease control. Many faculty members have close interactions with industry representatives, advisors, and policy makers throughout California and worldwide. This is critical to applied research for identifying emerging and common plant diseases and microbes, and developing innovative management programs based on ecological and epidemiological approaches.

We invite you to explore the research programs of our world-class faculty, our critical work in cooperative extension, and the graduate and undergraduate programs that we sponsor.

Microbiology and Plant Pathology

There are 1509 publications in this collection, published between 1957 and 2020.
Recent Work (232)

Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons.

While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.

siRNAs compete with miRNAs for methylation by HEN1 in Arabidopsis.

Plant microRNAs (miRNAs) and small interfering RNAs (siRNAs) bear a 2'-O-methyl group on the 3'-terminal nucleotide. This methyl group is post-synthetically added by the methyltransferase protein HEN1 and protects small RNAs from enzymatic activities that target the 3'-OH. A mutagenesis screen for suppressors of the partial loss-of-function hen1-2 allele in Arabidopsis identified second-site mutations that restore miRNA methylation. These mutations affect two subunits of the DNA-dependent RNA polymerase IV (Pol IV), which is essential for the biogenesis of 24 nt endogenous siRNAs. A mutation in RNA-dependent RNA polymerase 2, another essential gene for the biogenesis of endogenous 24-nt siRNAs, also rescued the defects in miRNA methylation of hen1-2, revealing a previously unsuspected, negative influence of siRNAs on HEN1-mediated miRNA methylation. In addition, our findings imply the existence of a negative modifier of HEN1 activity in the Columbia genetic background.

Discovery of replicating circular RNAs by RNA-seq and computational algorithms.

Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of replicating circular RNAs by analysing the total small RNA populations from samples of diseased tissues with a computational program known as progressive filtering of overlapping small RNAs (PFOR). However, PFOR written in PERL language is extremely slow and is unable to discover those subviral pathogens that do not trigger in vivo accumulation of extensively overlapping small RNAs. Moreover, PFOR is yet to identify a new viroid capable of initiating independent infection. Here we report the development of PFOR2 that adopted parallel programming in the C++ language and was 3 to 8 times faster than PFOR. A new computational program was further developed and incorporated into PFOR2 to allow the identification of circular RNAs by deep sequencing of long RNAs instead of small RNAs. PFOR2 analysis of the small RNA libraries from grapevine and apple plants led to the discovery of Grapevine latent viroid (GLVd) and Apple hammerhead viroid-like RNA (AHVd-like RNA), respectively. GLVd was proposed as a new species in the genus Apscaviroid, because it contained the typical structural elements found in this group of viroids and initiated independent infection in grapevine seedlings. AHVd-like RNA encoded a biologically active hammerhead ribozyme in both polarities, and was not specifically associated with any of the viruses found in apple plants. We propose that these computational algorithms have the potential to discover novel circular RNAs in plants, invertebrates and vertebrates regardless of whether they replicate and/or induce the in vivo accumulation of small RNAs.

229 more worksshow all