A common problem in cosmology is to integrate the product of two or more
spherical Bessel functions (sBFs) with different configuration-space arguments
against the power spectrum or its square, weighted by powers of wavenumber.
Naively computing them scales as $N_{\rm g}^{p+1}$ with $p$ the number of
configuration space arguments and $N_{\rm g}$ the grid size, and they cannot be
done with Fast Fourier Transforms (FFTs). Here we show that by rewriting the
sBFs as sums of products of sine and cosine and then using the product to sum
identities, these integrals can then be performed using 1-D FFTs with $N_{\rm
g} \log N_{\rm g}$ scaling. This "rotation" method has the potential to
accelerate significantly a number of calculations in cosmology, such as
perturbation theory predictions of loop integrals, higher order correlation
functions, and analytic templates for correlation function covariance matrices.
We implement this approach numerically both in a free-standing,
publicly-available \textsc{Python} code and within the larger,
publicly-available package \texttt{mcfit}. The rotation method evaluated with
direct integrations already offers a factor of 6-10$\times$ speed-up over the
naive approach in our test cases. Using FFTs, which the rotation method
enables, then further improves this to a speed-up of $\sim$$1000-3000\times$
over the naive approach. The rotation method should be useful in light of
upcoming large datasets such as DESI or LSST. In analysing these datasets
recomputation of these integrals a substantial number of times, for instance to
update perturbation theory predictions or covariance matrices as the input
linear power spectrum is changed, will be one piece in a Monte Carlo Markov
Chain cosmological parameter search: thus the overall savings from our method
should be significant.