We present analysis for the reduction of an inertial description of
fluid-structure interactions subject to thermal fluctuations. We show how the
viscous coupling between the immersed structures and the fluid can be
simplified in the regime where this coupling becomes increasingly strong. Many
descriptions in fluid mechanics and in the formulation of computational methods
account for fluid-structure interactions through viscous drag terms to transfer
momentum from the fluid to immersed structures. In the inertial regime, this
coupling often introduces a prohibitively small time-scale into the temporal
dynamics of the fluid-structure system. This is further exacerbated in the
presence of thermal fluctuations. We discuss here a systematic reduction
technique for the full inertial equations to obtain a simplified description
where this coupling term is eliminated. This approach also accounts for the
effective stochastic equations for the fluid-structure dynamics. The analysis
is based on use of the Infinitesmal Generator of the SPDEs and a singular
perturbation analysis of the Backward Kolomogorov PDEs. We also discuss the
physical motivations and interpretation of the obtained reduced description of
the fluid-structure system. Working paper currently under revision. Please
report any comments or issues to tabak.gil@gmail.com.