Rising temperatures and aridity may negatively impact tree growth, and therefore ecosystem services like carbon sequestration. In the Sierra Nevada in California, annual variation in precipitation is high, and forests have already been impacted by several recent severe droughts. In this study, we used growth census data from long-term plots in the Sierra Nevada to calibrate an annual climate-dependent growth model. Our results highlight a high diversity of responses to climate, although the effects of climate are small compared to those of tree size and competition. Some species grow less during dry years (Pinus contorta and Calocedrus decurrens) but, surprisingly, other species exhibit higher growth during dry years (Pinus monticola, Abies magnifica, Pinus jeffreyi, Quercus kelloggii). These results emphasize the need for growth models to take into account species variability, as well as spatial heterogeneity, when studying mixed conifer forests. So far, temperatures have increased in California, and tree growth of some species may drastically decrease in the Sierra Nevada if warming continues, leading to changes in forest structure and composition as well as potential changes in wood production and carbon sequestration.