Following acute infection, rare naive T-cells expand in number, differentiate into effector cells, and acquire functions to combat the pathogen. Resolution of the response results in the death of a majority of the effector cells and survival of a small population of memory T-cells with properties that contribute to increased protection from reinfection. Many T-cell intrinsic and extrinsic signals have been found to enhance or detract from effector and memory cell differentiation. It has been postulated that strength of antigen-receptor signals influences subsequent fate of naive T-cells during the effector to memory transition, however, the nature of these signals and mechanisms of action are unclear.
An approach was taken to genetically mark populations of T-cells in mice that differed in the amount of antigen-receptor stimulation. By using this method with the well characterized acute lymphocytic choriomeningitis virus (LCMV) model of infection, the fate of antigen-specific CD4+ effector T-cells generated as a result of different amounts of TCR signal strength was determined in vivo. Our findings provide in vivo evidence in support of a deterministic model of CD4+ memory generation following acute viral infection where programming events driven in part by the strength of initial antigen-receptor stimulation influence the fate of responding CD4+ cells during the transition to memory.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.