Exercising direct control over the unusual electronic structures arising from quantum confinement effects in graphene nanoribbons (GNRs) is intimately linked to geometric boundary conditions imposed by the structure of the ribbon. Besides composition and position of substitutional dopant atoms, the symmetry of the unit cell, width, length, and termination of a GNR govern its electronic structure. Here, we present a rational design that integrates each of these interdependent variables within a modular bottom-up synthesis. Our hybrid chemical approach relies on a catalyst-transfer polymerization that establishes excellent control over length, width, and end groups. Complemented by a surface-assisted cyclodehydrogenation step, uniquely enabled by matrix-assisted direct (MAD) transfer protocols, geometry and functional handles encoded in a polymer template are faithfully mapped onto the structure of the corresponding GNR. Bond-resolved scanning tunneling microscopy (BRSTM) and spectroscopy (STS) validate the robust correlation between polymer template design and GNR electronic structure.