We report on the development of a new technique for the measurement of the longitudinal beam profile in storage rings. This technique, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store, and display the required information. The available choices of laser repetition frequency, pulse width, and phase modulation give a wide range of options for matching the bunch configuration of a particular storage ring. Besides the dynamic measurement of the longitudinal profile of each bunch, the instrument can monitor the evolution of the bunch tails, the presence of untrapped particles and their diffusion into nominally empty RF buckets ("ghost bunches").
The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction create showers in the absorbers placed in front of the cryogenic separation dipoles. The shower energy, as it can be measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. This principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, detector and front-end electronics must comply with extremely stringent requirements. To make the bunch-by-bunch measurement feasible, their speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, in the actual operation the detector must stand extremely high radiation doses. The front-end electronics, to survive, must be located at some distance from the region of high radiation field, which means that a properly terminated, low-noise, cable connection is needed between detector and front-end electronics. After briefly reviewing the solutions that have been adopted for the detector and the front-end electronics and the results that have been obtained so far in tests on the beam, the latest version of the instrument in describe in detail. It will be shown how a clever detector design, a suitable front-end conception based on the use of a "cold resistance" cable termination and a careful low-noise design, along with the use of an effective deconvolution algorithm, make the luminosity measurement possible on a bunch-by-bunch basis at the LHC bunch repetition rates.
We report on development of a new storage ring operations tool for measurement of longitudinal beam density profile. The technique mixes synchrotron light with light from a mode locked solid-state laser oscillator in a non-linear crystal and detects the up-converted radiation with a photo-multiplier. The laser is phase locked to the storage ring RF system. The laser choices available for repetition frequency, pulse length and phase modulation give a very wide range of options for matching the bunch configuration of particular storage rings. Progress in the technology of solid-state lasers ensures this system can be made robust for routine use in storage ring operations. A very large number of important applications are possible including measurement of the fraction of untrapped particles prior to acceleration, the population of particles in the nominally unfilled RF buckets in a bunch train ("ghost bunches"), longitudinal tails, the diffusion of particles into the beam abort gap and the normal bunch parameters of longitudinal shape and intensity. We are currently investigating application to two devices: (1) the 1.9 GeV ALS electron storage ring at LBNL with 328 RF buckets, 2ns bucket spacing, 276 nominally filled bunches, 15-30ps rms bunch length and (2) the 7 TeV LHC proton collider under construction at CERN with 35,640 RF buckets, 2.5 ns bucket spacing, 2,808 nominally filled bunches, 280-620 ps rms bunch length. A proof of principle experiment is being conducted on ALS. The results of the ALS experiment and detailed analyses of the application to LHC and its requirements are described.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.