Imatinib mesylate (Gleevec) is a small-molecule inhibitor of the fusion protein Bcr-Abl, the causal agent in chronic myelogenous leukemia. Here we report ten individuals who developed severe congestive heart failure while on imatinib and we show that imatinib-treated mice develop left ventricular contractile dysfunction. Transmission electron micrographs from humans and mice treated with imatinib show mitochondrial abnormalities and accumulation of membrane whorls in both vacuoles and the sarco- (endo-) plasmic reticulum, findings suggestive of a toxic myopathy. With imatinib treatment, cardiomyocytes in culture show activation of the endoplasmic reticulum (ER) stress response, collapse of the mitochondrial membrane potential, release of cytochrome c into the cytosol, reduction in cellular ATP content and cell death. Retroviral gene transfer of an imatinib-resistant mutant of c-Abl, alleviation of ER stress or inhibition of Jun amino-terminal kinases, which are activated as a consequence of ER stress, largely rescues cardiomyocytes from imatinib-induced death. Thus, cardiotoxicity is an unanticipated side effect of inhibition of c-Abl by imatinib.
Background and Objectives: Cancer and coronary artery disease (CAD) often coexist. Compared to quantitative coronary angiography (QCA), fractional flow reserve (FFR) has emerged as a more reliable method of identifying significant coronary stenoses. We aimed to assess the specific management, safety and outcomes of FFR-guided percutaneous coronary intervention (PCI) in cancer patients with stable CAD. Materials and Methods: FFR was used to assess cancer patients that underwent coronary angiography for stable CAD between September 2008 and May 2016, and were found to have ≥50% stenosis by QCA. Patients with lesions with an FFR > 0.75 received medical therapy alone, while those with FFR ≤ 0.75 were revascularized. Procedure-related complications, all-cause mortality, nonfatal myocardial infarction, or urgent revascularizations were analyzed. Results: Fifty-seven patients with stable CAD underwent FFR on 57 lesions. Out of 31 patients with ≥70% stenosis as measured by QCA, 14 (45.1%) had an FFR ≥ 0.75 and lesions were reclassified as moderate and did not receive PCI nor DAPT. Out of 26 patients with <70% stenosis as measured by QCA, 6 (23%) had an FFR < 0.75 and were reclassified as severe and were treated with PCI and associated DAPT. No periprocedural complications, urgent revascularization, acute coronary syndromes, or cardiovascular deaths were noted. There was a 22.8% mortality at 1 year, all cancer related. Patients who received a stent by FFR assessment showed a significant association with decreased risk of all-cause death (HR: 0.37, 95% CI 0.15-0.90, p = 0.03). Conclusions: Further studies are needed to define the optimal therapeutic approach for cancer patients with CAD. Using an FFR cut-off point of 0.75 to guide PCI translates into fewer interventions and can facilitate cancer care. There was an overall reduction in mortality in patients that received a stent, suggesting increased resilience to cancer therapy and progression.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.