Many close stellar binaries are accompanied by a faraway star. The "eccentric Kozai-Lidov" (EKL) mechanism can cause dramatic inclination and eccentricity fluctuations, resulting in tidal tightening of inner binaries of triple stars. We run a large set of Monte Carlo simulations, including the secular evolution of the orbits, general relativistic precession, and tides, and we determine the semimajor axis, eccentricity, inclination, and spin-orbit angle distributions of the final configurations. We find that the efficiency of forming tight binaries (≲ 16 days) when taking the EKL mechanism into account is 21%, and about 4% of all simulated systems ended up in a merger event. These merger events can lead to the formation of blue stragglers. Furthermore, we find that the spin-orbit angle distribution of the inner binaries carries a signature of the initial setup of the system; thus, observations can be used to disentangle close binaries' birth configuration. The resulting inner and outer final orbits' period distributions and their estimated fraction suggest that secular dynamics may be a significant channel for the formation of close binaries in triples and even blue stragglers.