Let $k\geq 2, n\geq 1$ be integers. Let $f: \mathbb{R}^{n} \to \mathbb{C}$. The $k$th Gowers-Host-Kra norm of $f$ is defined recursively by
\begin{equation*} \| f\|_{U^{k}}^{2^{k}} =\int_{\mathbb{R}^{n}} \| T^{h}f \cdot \bar{f} \|_{U^{k-1}}^{2^{k-1}} \, dh \end{equation*}
with $T^{h}f(x) = f(x+h)$ and $\|f\|_{U^1} = | \int_{\mathbb{R}^{n}} f(x)\, dx |$. These norms were introduced by Gowers [11] in his work on Szemer