We study the cylinder to sphere morphological transition of diblock copolymers in aqueous solution with a hydrophobic block and a charged block. We find a metastable undulated cylinder configuration for a range of charge and salt concentrations which, nevertheless, occurs above the threshold where spheres are thermodynamically favorable. By modeling the shape of the cylinder ends, we find that the free-energy barrier for the transition from cylinders to spheres is quite large and that this barrier falls significantly in the limit of high polymer charge and low solution salinity. This suggests that observed undulated cylinder phases are kinetically trapped structures.
We establish a one-to-one mapping between a model for hexagonal polyelectrolyte bundles and a model for two-dimensional, frustrated Josephson-junction arrays. We find that the T=0 insulator-to-superconductor transition of the quantum system corresponds to a continuous liquid-to-solid transition of the condensed charge in the finite-temperature classical system. We find that the role of the vector potential in the quantum system is played by elastic strain in the classical system. Exploiting this correspondence we show that the transition is accompanied by a spontaneous breaking of a discrete symmetry associated with the chiral patterning of the array and that at the transition the polyelectrolyte bundle adopts a universal response to shear.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.