A global climatological distribution of tropospheric OH is computed using observed distributions of O3, H2O, NOt (NO2 +NO + 2N2O5 + NO3 + HNO2 +HNO4), CO, hydrocarbons, temperature, and cloud optical depth. Global annual mean OH is 1.16×106 molecules cm−3(integrated with respect to mass of air up to 100 hPa within ±32° latitude and up to 200 hPa outside that region). Mean hemispheric concentrations of OH are nearly equal. While global mean OH increased by 33% compared to that from Spivakovsky et al. [1990], mean loss frequencies of CH3CCl3 and CH4 increased by only 23% because a lower fraction of total OH resides in the lower troposphere in the present distribution. The value for temperature used for determining lifetimes of hydrochlorofluorocarbons (HCFCs) by scaling rate constants [Prather and Spivakovsky, 1990] is revised from 277 K to 272 K. The present distribution of OH is consistent within a few percent with the current budgets of CH3CCl3 and HCFC-22. For CH3CCl3, it results in a lifetime of 4.6 years, including stratospheric and ocean sinks with atmospheric lifetimes of 43 and 80 years, respectively. For HCFC-22, the lifetime is 11.4 years, allowing for the stratospheric sink with an atmospheric lifetime of 229 years. Corrections suggested by observed levels of CH2Cl2 (annual means) depend strongly on the rate of interhemispheric mixing in the model. An increase in OH in the Northern Hemisphere by 20% combined with a decrease in the southern tropics by 25% is suggested if this rate is at its upper limit consistent with observations of CFCs and 85Kr. For the lower limit, observations of CH2Cl2 imply an increase in OH in the Northern Hemisphere by 35% combined with a decrease in OH in the southern tropics by 60%. However, such large corrections are inconsistent with observations for 14CO in the tropics and for the interhemispheric gradient of CH3CCl3. Industrial sources of CH2Cl2 are sufficient for balancing its budget. The available tests do not establish significant errors in OH except for a possible underestimate in winter in the northern and southern tropics by 15–20% and 10–15%, respectively, and an overestimate in southern extratropics by ∼25%. Observations of seasonal variations of CH3CCl3, CH2Cl2,14CO, and C2H6 offer no evidence for higher levels of OH in the southern than in the northern extratropics. It is expected that in the next few years the latitudinal distribution and annual cycle of CH3CCl3 will be determined primarily by its loss frequency, allowing for additional constraints for OH on scales smaller than global.
R
esults from simulations performed for the Atmospheric Chemistry and Climate Modeling Intercomparison Project (ACCMIP) are analysed to examine how OH and methane lifetime may change from present day to the future, under different climate and emissions scenarios. Present day (2000) mean tropospheric chemical lifetime derived from the ACCMIP multi-model mean is 9.8 ± 1.6 yr (9.3 ± 0.9 yr when only including selected models), lower than a recent observationally-based estimate, but with a similar range to previous multi-model estimates. Future model projections are based on the four Representative Concentration Pathways (RCPs), and the results also exhibit a large range. Decreases in global methane lifetime of 4.5 ± 9.1% are simulated for the scenario with lowest radiative forcing by 2100 (RCP 2.6), while increases of 8.5 ± 10.4% are simulated for the scenario with highest radiative forcing (RCP 8.5). In this scenario, the key driver of the evolution of OH and methane lifetime is methane itself, since its concentration more than doubles by 2100 and it consumes much of the OH that exists in the troposphere. Stratospheric ozone recovery, which drives tropospheric OH decreases through photolysis modifications, also plays a partial role. In the other scenarios, where methane changes are less drastic, the interplay between various competing drivers leads to smaller and more diverse OH and methane lifetime responses, which are difficult to attribute. For all scenarios, regional OH changes are even more variable, with the most robust feature being the large decreases over the remote oceans in RCP8.5. Through a regression analysis, we suggest that differences in emissions of non-methane volatile organic compounds and in the simulation of photolysis rates may be the main factors causing the differences in simulated present day OH and methane lifetime. Diversity in predicted changes between present day and future OH was found to be associated more strongly with differences in modelled temperature and stratospheric ozone changes. Finally, through perturbation experiments we calculated an OH feedback factor (F) of 1.24 from present day conditions (1.50 from 2100 RCP8.5 conditions) and a climate feedback on methane lifetime of 0.33 ± 0.13 yr K−1, on average. Models that did not include interactive stratospheric ozone effects on photolysis showed a stronger sensitivity to climate, as they did not account for negative effects of climate-driven stratospheric ozone recovery on tropospheric OH, which would have partly offset the overall OH/methane lifetime response to climate change.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.