Skip to main content
Open Access Publications from the University of California

Faculty Publications

The Department of Earth System Science (ESS) focuses on how the atmosphere, land, and oceans interact as a system, and how the Earth will change over a human lifetime.

Cover page of The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018.

The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018.


Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960-2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr-1, and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8-1034 Tg CO2 yr-1. Over the period 2013-2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000-2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The formation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 mW (mW) m-2 (5-95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m-2), CO2 (34.3 mW m-2), and NOx (17.5 mW m-2). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m-2. Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials (GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.

Cover page of Drought and plant litter chemistry alter microbial gene expression and metabolite production.

Drought and plant litter chemistry alter microbial gene expression and metabolite production.


Drought represents a significant stress to microorganisms and is known to reduce microbial activity and organic matter decomposition in Mediterranean ecosystems. However, we lack a detailed understanding of the drought stress response of microbial decomposers. Here we present metatranscriptomic and metabolomic data on the physiological response of in situ microbial communities on plant litter to long-term drought in Californian grass and shrub ecosystems. We hypothesised that drought causes greater microbial allocation to stress tolerance relative to growth pathways. In grass litter, communities from the decade-long ambient and reduced precipitation treatments had distinct taxonomic and functional profiles. The most discernable physiological signatures of drought were production or uptake of compatible solutes to maintain cellular osmotic balance, and synthesis of capsular and extracellular polymeric substances as a mechanism to retain water. The results show a clear functional response to drought in grass litter communities with greater allocation to survival relative to growth that could affect decomposition under drought. In contrast, communities on chemically more diverse and complex shrub litter had smaller physiological differences in response to long-term drought but higher investment in resource acquisition traits across precipitation treatments, suggesting that the functional response to drought is constrained by substrate quality. Our findings suggest, for the first time in a field setting, a trade off between microbial drought stress tolerance, resource acquisition and growth traits in plant litter microbial communities.

Cover page of End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia.

End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia.


Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections.

Cover page of The age distribution of global soil carbon inferred from radiocarbon measurements

The age distribution of global soil carbon inferred from radiocarbon measurements


© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Soils contain more carbon than the atmosphere and vegetation combined. An increased flow of carbon from the atmosphere into soil pools could help mitigate anthropogenic emissions of carbon dioxide and climate change. Yet we do not know how quickly soils might respond because the age distribution of soil carbon is uncertain. Here we used 789 radiocarbon (∆14C) profiles, along with other geospatial information, to create globally gridded datasets of mineral soil ∆14C and mean age. We found that soil depth is a primary driver of ∆14C, whereas climate (for example, mean annual temperature) is a major control on the spatial pattern of ∆14C in surface soil. Integrated to a depth of 1 m, global soil carbon has a mean age of 4,830 ± 1,730 yr, with older carbon in deeper layers and permafrost regions. In contrast, vertically resolved land models simulate ∆14C values that imply younger carbon ages and a more rapid carbon turnover. Our data-derived estimates of older mean soil carbon age suggest that soils will accumulate less carbon than predicted by current Earth system models over the twenty-first century. Reconciling these models with the global distribution of soil radiocarbon will require a better representation of the mechanisms that control carbon persistence in soils.

The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.


The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

Cover page of The International Bathymetric Chart of the Arctic Ocean Version 4.0.

The International Bathymetric Chart of the Arctic Ocean Version 4.0.


Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 × 200 m versus 500 × 500 m) and with individual depth soundings constraining three times more area of the Arctic Ocean (∼19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises ∼14.3% in Ver. 4.0 compared to ∼5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet.

Cover page of Embracing a new paradigm for temperature sensitivity of soil microbes.

Embracing a new paradigm for temperature sensitivity of soil microbes.


The temperature sensitivity of soil processes is of major interest, especially in light of climate change. Originally formulated to explain the temperature dependence of chemical reactions, the Arrhenius equation, and related Q10 temperature coefficient, has a long history of application to soil biological processes. However, empirical data indicate that Q10 and Arrhenius model are often poor metrics of temperature sensitivity in soils. In this opinion piece, we aim to (a) review alternative approaches for characterizing temperature sensitivity, focusing on macromolecular rate theory (MMRT); (b) provide strategies and tools for implementing a new temperature sensitivity framework; (c) develop thermal adaptation hypotheses for the MMRT framework; and (d) explore new questions and opportunities stemming from this paradigm shift. Microbial ecologists should consider developing and adopting MMRT as the basis for predicting biological rates as a function of temperature. Improved understanding of temperature sensitivity in soils is particularly pertinent as microbial response to temperature has a large impact on global climate feedbacks.