PALS1-associated tight junction (PATJ) protein is linked to metabolic disease and stroke in human genetic studies. Despite the recognized role of PATJ in cell polarization, its specific functions in metabolic disease and ischemic stroke recovery remain largely unexplored. We explored the functions of PATJ in an in vitro model and in vivo in C. elegans and mice. Using a mouse model of stroke, we found post-ischemic stroke duration-dependent increase of PATJ abundance in endothelial cells. PATJ knock-out (KO) HEK293 cells generated by CRISPR-Cas9 suggest roles for PATJ in cell proliferation, migration, mitochondrial stress response, and interactions with the Yes-associated protein (YAP)-1 signaling pathway. Notably, PATJ deletion altered YAP1 nuclear translocation. PATJ KO cells demonstrated transcriptional reprogramming based on RNA sequencing analysis, and identified dysregulation in genes central to vascular development, stress response, and metabolism, including RUNX1, HEY1, NUPR1, and HK2. Furthermore, we found that mpz-1, the homolog of PATJ, was significantly upregulated under hypoxic conditions in C. elegans. Knockdown of mpz-1 resulted in abnormal neuronal morphology and increased mortality, both of which were exacerbated by hypoxia exposure, indicating a critical protective role of PATJ/MPZ-1 in maintaining neuronal integrity and survival, particularly during oxygen deprivation stress relevant to ischemic stroke. These insights offer a new understanding of PATJ's regulatory functions within cellular and vascular physiology and help lay the groundwork for therapeutic strategies targeting PATJ-mediated pathways for stroke rehabilitation and neurovascular repair.