- Chen, James Y;
- Miyanishi, Masanori;
- Wang, Sean K;
- Yamazaki, Satoshi;
- Sinha, Rahul;
- Kao, Kevin S;
- Seita, Jun;
- Sahoo, Debashis;
- Nakauchi, Hiromitsu;
- Weissman, Irving L
Haematopoietic stem cells (HSCs) are arguably the most extensively characterized tissue stem cells. Since the identification of HSCs by prospective isolation, complex multi-parameter flow cytometric isolation of phenotypic subsets has facilitated studies on many aspects of HSC biology, including self-renewal, differentiation, ageing, niche, and diversity. Here we demonstrate by unbiased multi-step screening, identification of a single gene, homeobox B5 (Hoxb5, also known as Hox-2.1), with expression in the bone marrow that is limited to long-term (LT)-HSCs in mice. Using a mouse single-colour tri-mCherry reporter driven by endogenous Hoxb5 regulation, we show that only the Hoxb5(+) HSCs exhibit long-term reconstitution capacity after transplantation in primary transplant recipients and, notably, in secondary recipients. Only 7-35% of various previously defined immunophenotypic HSCs are LT-HSCs. Finally, by in situ imaging of mouse bone marrow, we show that >94% of LT-HSCs (Hoxb5(+)) are directly attached to VE-cadherin(+) cells, implicating the perivascular space as a near-homogenous location of LT-HSCs.