Given a finite collection P of convex n-polytopes in RP^n (n>1), we consider a
real projective manifold M which is obtained by gluing together the polytopes in P along
their facets in such a way that the union of any two adjacent polytopes sharing a common
facet is convex. We prove that the real projective structure on M is (1) convex if P
contains no triangular polytope, and (2) properly convex if, in addition, P contains a
polytope whose dual polytope is thick. Triangular polytopes and polytopes with thick duals
are defined as analogues of triangles and polygons with at least five edges, respectively.