Purpose
A situational awareness Bayesian network (SA-BN) approach is developed to improve physicians' trust in the prediction of radiation outcomes and evaluate its performance for personalized adaptive radiotherapy (pART).Methods
118 non-small-cell lung cancer patients with their biophysical features were employed for discovery (n = 68) and validation (n = 50) of radiation outcomes prediction modeling. Patients' important characteristics identified by radiation experts to predict individual's tumor local control (LC) or radiation pneumonitis with grade ≥ 2 (RP2) were incorporated as expert knowledge (EK). Besides generating an EK-based naïve BN (EK-NBN), an SA-BN was developed by incorporating the EK features into pure data-driven BN (PD-BN) methods to improve the credibility of LC or / and RP2 prediction. After using area under the free-response receiver operating characteristics curve (AU-FROC) to assess the joint prediction of these outcomes, their prediction performances were compared with a regression approach based on the expert yielded estimates (EYE) penalty and its variants.Results
In addition to improving the credibility of radiation outcomes prediction, the SA-BN approach outperformed the EYE penalty and its variants in terms of the joint prediction of LC and RP2. The value of AU-FROC improves from 0.70 (95% CI: 0.54-0.76) using EK-NBN, to 0.75 (0.65-0.82) using a variant of EYE penalty, to 0.83 (0.75-0.93) using PD-BN and 0.83 (0.77-0.90) using SA-BN; with similar trends in the validation cohort.Conclusions
The SA-BN approach can provide an accurate and credible human-machine interface to gain physicians' trust in clinical decision-making, which has the potential to be an important component of pART.