We present a method for optimal path planning of human walking paths in
mountainous terrain, using a control theoretic formulation and a
Hamilton-Jacobi-Bellman equation. Previous models for human navigation were
entirely deterministic, assuming perfect knowledge of the ambient elevation
data and human walking velocity as a function of local slope of the terrain.
Our model includes a stochastic component which can account for uncertainty in
the problem, and thus includes a Hamilton-Jacobi-Bellman equation with
viscosity. We discuss the model in the presence and absence of stochastic
effects, and suggest numerical methods for simulating the model. We discuss two
different notions of an optimal path when there is uncertainty in the problem.
Finally, we compare the optimal paths suggested by the model at different
levels of uncertainty, and observe that as the size of the uncertainty tends to
zero (and thus the viscosity in the equation tends to zero), the optimal path
tends toward the deterministic optimal path.