Wound healing is a complex process that requires the intervention of cytoactive factors. The one-time application of soluble factors to a wound bed does not maintain a steady, sufficient concentration. Here we investigated the benefits of anchoring a factor in a wound bed via a tether to endogenous collagen. We used a collagen-mimetic peptide (CMP) as a pylon. The CMP binds to damaged but not intact collagen and thus localizes a pendant cytoactive factor in the regions of a wound bed that require intervention. As a model factor, we chose substance P, a peptide of the tachykinin family that promotes wound healing. Using splinted wounds in db/db mice, we found that the one-time application of a CMP-substance P conjugate enhances wound healing compared to unconjugated substance P and other controls. Specifically, all 16 wounds treated with the conjugate closed more thoroughly and, did so with extensive re-epithelialization and mitigated inflammatory activity. These data validate a simple and general strategy for re-engineering wound beds by the integration of beneficial cytoactive factors. Copyright © 2014 John Wiley & Sons, Ltd.