A method is developed to determine how crash characteristics are related to traffic flow conditions at the time of occurrence. Crashes are described in terms of the type and location of the collision, the number of vehicles involved, movements of these vehicles prior to collision, and severity. Traffic flow is characterized by central tendencies and variations of traffic flow and flow/occupancy for three different lanes at the time and place of the crash. The method involves nonlinear canonical correlation applied together with cluster analyses to identify traffic flow regimes with distinctly different crash taxonomies. A case study using data for more than 1,000 crashes in Southern California identified twenty-one traffic flow regimes for three different ambient conditions: dry roads during daylight (eight regimes), dry roads at night (six regimes), and wet conditions (seven regimes). Each of these regimes has a unique profile in terms of the type of crashes that are most likely to occur, and a matching of traffic flow parameters and crash characteristics reveals ways in which congestion affects highway safety.