Mass spectrometry imaging enables label-free, high-resolution spatial mapping of the chemical composition of complex, biological samples. Typical experiments require selecting ions and/or positions from the images: ions for fragmentation studies to identify keystone compounds and positions for follow up validation measurements using microdissection or other orthogonal techniques. Unfortunately, with modern imaging machines, these must be selected from an overwhelming amount of raw data. Existing techniques to reduce the volume of data, the most popular of which are principle component analysis and non-negative matrix factorization, have the disadvantage that they return difficult-to-interpret linear combinations of actual data elements. In this work, we show that CX and CUR matrix decompositions can be used directly to address this selection need. CX and CUR matrix decompositions use empirical statistical leverage scores of the input data to provide provably good low-rank approximations of the measured data that are expressed in terms of actual ions and actual positions, as opposed to difficult-to-interpret eigenions and eigenpositions. We show that this leads to effective prioritization of information for both ions and positions. In particular, important ions can be found either by using the leverage scores as a ranking function and using a deterministic greedy selection algorithm or by using the leverage scores as an importance sampling distribution and using a random sampling algorithm; however, selection of important positions from the original matrix performed significantly better when they were chosen with the random sampling algorithm. Also, we show that 20 ions or 40 locations can be used to reconstruct the original matrix to a tolerance of 17% error for a widely studied image of brain lipids; and we provide a scalable implementation of this method that is applicable for analysis of the raw data where there are often more than a million rows and/or columns, which is larger than SVD-based low-rank approximation methods can handle. These results introduce the concept of CX/CUR matrix factorizations to mass spectrometry imaging, describing their utility and illustrating principled algorithmic approaches to deal with the overwhelming amount of data generated by modern mass spectrometry imaging.