High-resolution NMR of samples in the solid state is typically performed under mechanical sample spinning around an axis that makes an angle, called the magic angle, of 54.7 degrees with the static magnetic field. There are many cases in which geometrical and engineering constraints prevent spinning at this specific angle. Implementations of in-situ and ex-situ magic angle field spinning might be extremely demanding because of the power requirements or an inconvenient sample size or geometry. Here we present a methodology based on switched angle spinning between two angles, none of which is the magic angle, which provide both isotropic and anisotropic information. Using this method, named Projected Magic Angle Spinning, we were able to obtain resolved isotropic chemical shifts in spinning samples where the broadening is mostly inhomogeneous.