- Ting, Pamela Y;
- Damoiseaux, Robert;
- Titz, Björn;
- Bradley, Kenneth A;
- Graeber, Thomas G;
- Fernández-Vega, Virneliz;
- Bannister, Thomas D;
- Chase, Peter;
- Nair, Reji;
- Scampavia, Louis;
- Hodder, Peter;
- Spicer, Timothy P;
- Colicelli, John
- Editor(s): Wang, Qiming Jane
Constitutively active BCR-ABL kinase fusions are causative mutations in the pathogenesis of hematopoietic neoplasias including chronic myelogenous leukemia (CML). Although these fusions have been successfully targeted with kinase inhibitors, drug-resistance and relapse continue to limit long-term survival, highlighting the need for continued innovative drug discovery. We developed a time-resolved Förster resonance energy transfer (TR-FRET) -based assay to identify compounds that disrupt stimulation of the ABL kinase by blocking its ability to bind the positive regulator RIN1. This assay was used in a high throughput screen (HTS) of two small molecule libraries totaling 444,743 compounds. 708 confirmed hits were counter-screened to eliminate off-target inhibitors and reanalyzed to prioritize compounds with IC50 values below 10 μM. The CML cell line K562 was then used to identify five compounds that decrease MAPK1/3 phosphorylation, which we determined to be an indicator of RIN1-dependent ABL signaling. One of these compounds is a thiadiazole, and the other four are structurally related acyl piperidine amides. Notably, these five compounds lower cellular BCR-ABL1 kinase activity by blocking a positive regulatory interaction rather than directly inhibiting ABL catalytic function.