Efficient and cost-effective conversion of plant biomass to usable forms of energy requires a thorough understanding of cell wall biosynthesis, modification and degradation. To elucidate these processes, we assessed the expression dynamics during enzymatic removal and regeneration of rice cell walls in suspension cells over time. In total, 928 genes exhibited significant up-regulation during cell wall removal, whereas, 79 genes were up-regulated during cell wall regeneration. Both gene sets are enriched for kinases, transcription factors and genes predicted to be involved in cell wall-related functions. Integration of the gene expression datasets with a catalog of known and/or predicted biochemical pathways from rice, revealed metabolic and hormonal pathways involved in cell wall degradation and regeneration. Rice lines carrying Tos17 mutations in genes up-regulated during cell wall removal exhibit dwarf phenotypes. Many of the genes up-regulated during cell wall development are also up-regulated in response to infection and environmental perturbations indicating a coordinated response to diverse types of stress.
Glycoside hydrolases (GH) catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/). This database integrates multiple data types including the structural features, orthologous relationships, mutant availability, and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in RiceNet, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.