The use of blood biomarkers for stroke has been long considered an excellent method to determine the occurrence, timing, subtype, and severity of stroke. In this study, venous blood was obtained from ischemic stroke patients after stroke onset and compared with age and sex-matched controls. We used a multiplex panel of 37 inflammatory molecules, analyzed using Luminex MagPix technology, to identify the changes in plasma proteins after ischemic stroke. We identified eight key molecules that were altered within the blood of stroke patients as compared to controls. Plasma levels of interleukin 6 signal transducer (sIL-6Rβ/gp130), matrix metalloproteinase-2 (MMP-2), osteopontin, sTNF-R1 and sTNF-R2 were significantly higher in stroke patients compared to controls. Interferon-β, interleukin-28, and thymic stromal lymphopoietin (TSLP) were decreased in plasma from stroke patients. No other immunological markers were significantly different between patient groups. When stroke patients were treated with tissue plasminogen activator (t-PA), plasma levels of interferon-α2 significantly increased while interleukin-2 and pentraxin-3 decreased. The discriminatory power of the molecules was evaluated by receiver operating characteristic (ROC) analysis. According to ROC analysis, the best markers for distinguishing stroke occurrence were MMP-2 (AUC = 0.76, sensitivity 62.5%, specificity 88.5%), sTNF-R2 (AUC = 0.75, sensitivity 83.3%, specificity 65.3%) and TSLP (AUC = 0.81, sensitivity 66.7%, specificity 96.2%). Multivariate logistic regression, used to evaluate the combination of proteins, identified a biomarker panel with high specificity and sensitivity (AUC = 0.96, sensitivity 87.5%, specificity 96.2%). These results indicate a novel set of blood biomarkers that could be used in a panel to identify stroke patients and their responsiveness to therapeutic intervention.