We conducted a sediment source survey to gain insight into soil erosion on Northern California rangeland watersheds and to provide information to facilitate informed land-use management, conservation prioritization and water-quality regulation decisions. The results indicate that by focusing on erosion associated with natural and historical influences, inventory and assessment efforts on these watersheds can characterize the majority of sediment deliverable to streams. While this volume of sediment does not require mitigation under current water-quality regulations, it none-theless prohibits the ability of instream sediment monitoring to detect water-quality changes. Water-quality regulations require managers to create inventories for all sources with 10 cubic yards or more of potentially deliverable sediment. If a monitoring threshold of 100 cubic yards was used, more than 99% of the deliverable sediment identified in this survey would be inventoried. This would require developing inventories for only 82 of the 117 sites in this study. Overall, we determined that rangeland managers can achieve the greatest reductions in sediment generation by focusing on erosion from roads.
Long-term water quality records for assessing natural variability, impact of management, and that guide regulatory processes to safeguard water resources are rare for California oak woodland rangelands. This study presents a 20-yr record (1981-2000) of nitrate-nitrogen (NO3-N) and suspended sediment export from a typical, grazed oak woodland watershed (103 ha) in the northern Sierra Nevada foothills of California. Mean annual precipitation over the 20-yr period was 734 mm yr(-1) (range 366-1205 mm yr(-1)). Mean annual stream flow was 353 mm y(-1) (range 87-848 mm yr(-1)). Average annual stream flow was 48.1 +/- 16% of precipitation. Mean annual NO3-N export was 1.6 kg ha(-1) yr(-1) (range 0.18-3.6 kg ha(-1) yr(-1)). Annual NO3-N export significantly (P < 0.05) increased with increasing annual stream flow and precipitation. Mean daily NO3-N export was 0.004 kg ha(-1) d(-1) (range 10(-5) to 0.55 kg ha(-1) d(-1)). Mean annual suspended sediment export was 198 kg ha(-1) yr(-1) (range 23-479 kg ha(-1) yr(-1)). There was a positive relationship (P < 0.05) between annual suspended sediment export, annual stream How and precipitation. Mean daily suspended sediment export was 0.54 kg ha(-1) d(-1) (range 10(-4) to 155 kg ha(-1) d(-1)). Virtually no sediment was exported during the dry season. The large variation in daily and annual fluxes highlights the necessity of using long-term records to establish quantitative water quality targets for rangelands and demonstrates the difficulty of designing a water quality monitoring program for these ecosystems.
Oak- and annual grass-dominated rangelands in California occupy 7.4 million acres, often occurring at the state's urban, wildland and agricultural interface. Rapidly changing land uses in these ecosystems have watershed-scale impacts that are the subject of intense debate among policy-makers, environmentalists and landowners. Watershed research conducted at the UC Hopland Research and Extension Center (HREC) between the 1950s and 1980s provided valuable information for predicting the effects of watershed management activities — such as converting oak and chaparral to grasslands — on water quantity and quality, slope stability and erosion. The research illustrated that conversion from woodland to grassland significantly impacts the hydrology and sediment dynamics of watersheds, suggesting that land-use changes such as vineyards and urban expansion must be evaluated carefully. Preliminary data from a new series of watershed studies initiated at HREC in 1998 indicate that livestock grazing does not significantly increase nutrient and sediment levels in stream water, but that current fecal coliform standards may be exceeded during storm events.