Results are reported from the complete salt phase of the Sudbury Neutrino Observatory experiment in which NaCl was dissolved in the D_2O target. The addition of salt enhanced the signal from neutron capture, as compared to the pure D_2O detector. By making a statistical separation of charged-current events from other types based on event-isotropy criteria, the effective electron recoil energy spectrum has been extracted. In units of 106 cm-2 s-1, the total flux of active-flavor neutrinos from 8B decay in the Sun is found to be 4.94+0.21_-0.21(stat)+0.38_-0.34(syst) and the integral flux of electron neutrinos for an undistorted 8B spectrum is 1.68+0.06_-0.06(stat)+0.08_-0.09(syst); the signal from (nu_x,e) elastic scattering is equivalent to an electron-neutrino flux of 2.35+0.22-0.22(stat)+0.15_-0.15(syst). These results are consistent with those expected for neutrino oscillations with the so-called Large Mixing Angle parameters, and also with an undistorted spectrum. A search for matter-enhancement effects in the Earth through a possible day-night asymmetry in the charged-current integral rate is consistent with no asymmetry. Including results from other experiments, the best-fit values for two-neutrino mixing parameters are Delta m2 = (8.0+0.6_-0.4) x 10-5 eV2 and theta = 33.9 +2.4_-2.2 degrees.
A search has been made for neutrinos from the hep reaction in the Sun and from the diffuse supernova neutrino background (DSNB) using data collected during the first operational phase of the Sudbury Neutrino Observatory, with an exposure of 0.65 kilotonne-years. For the hep neutrino search, two events are observed in the effective electron energy range of 14.3 MeV < Teff < 20 MeV where 3.1 background events are expected. After accounting for neutrino oscillations, an upper limit of 2.3 x 104 cm-2s-1 at the 90 percent confidence level is inferred on the integral total flux of hep neutrinos. For DSNB neutrinos, no events are observed in the effective electron energy range of 21 MeV < Teff < 35 MeV and, consequently, an upper limit on the nu e component of the DSNB fluxin the neutrino energy range of 22.9 MeV < E nu < 36.9 MeV of 70 cm-2-1 is inferred at the 90 percent confidence level. This is an improvement by a factor of 6.5 on the previous best upper limit on the hep neutrino flux and by two orders of magnitude on the previous upper limit on the nu e component of the DSNB flux.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.