An array of Neutral-Current Detectors (NCDs) has been built in order to make a unique measurement of the total active ux of solar neutrinos in the Sudbury Neutrino Observatory (SNO). Data in the third phase of the SNO experiment were collected between November 2004 and November 2006, after the NCD array was added to improve the neutral-current sensitivity of the SNO detector. This array consisted of 36 strings of proportional counters lled with a mixture of 3He and CF4 gas capable of detecting the neutrons liberated by the neutrino-deuteron neutral current reaction in the D2O, and four strings lled with a mixture of 4He and CF4 gas for background measurements. The proportional counter diameter is 5 cm. The total deployed array length was 398 m. The SNO NCD array is the lowest-radioactivity large array of proportional counters ever produced. This article describes the design, construction, deployment, and characterization of the NCD array, discusses the electronics and data acquisition system, and considers event signatures and backgrounds.
A search has been made for neutrinos from the hep reaction in the Sun and from the diffuse supernova neutrino background (DSNB) using data collected during the first operational phase of the Sudbury Neutrino Observatory, with an exposure of 0.65 kilotonne-years. For the hep neutrino search, two events are observed in the effective electron energy range of 14.3 MeV < Teff < 20 MeV where 3.1 background events are expected. After accounting for neutrino oscillations, an upper limit of 2.3 x 104 cm-2s-1 at the 90 percent confidence level is inferred on the integral total flux of hep neutrinos. For DSNB neutrinos, no events are observed in the effective electron energy range of 21 MeV < Teff < 35 MeV and, consequently, an upper limit on the nu e component of the DSNB fluxin the neutrino energy range of 22.9 MeV < E nu < 36.9 MeV of 70 cm-2-1 is inferred at the 90 percent confidence level. This is an improvement by a factor of 6.5 on the previous best upper limit on the hep neutrino flux and by two orders of magnitude on the previous upper limit on the nu e component of the DSNB flux.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.