Sampling of fluids in deep boreholes is challenging because of the necessity to minimize external contamination and maintain sample integrity during recovery. The U-tube sampling methodology was developed to collect large volume, multiphase samples at in situ pressures. As a permanent or semi-permanent installation, the U-tube can be used for rapidly acquiring multiple samples or it may be installed for long-term monitoring applications. The U-tube was first deployed in Liberty County, TX to monitor crosswell CO2 injection as part of the Frio CO2 sequestration experiment. Analysis of gases (dissolved or separate phase) was performed in the field using a quadrupole mass spectrometer, which served as the basis for determining the arrival of the CO2 plume. The presence of oxygen and argon in elevated concentrations, along with reduced methane concentration, indicate sample alteration caused by the introduction of surface fluids during borehole completion. Despite producing the well to eliminate non-native fluids, measurements demonstrate that contamination persists until the immiscible CO2 injection swept formation fluid into the observation wellbore.
A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase (supercritical CO2-brine) fluid from 1.5 km depth. The data sets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydro-geochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-Tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-Tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.