The excitation function for production of 262Bh in the odd-Z-projectile reaction 208Pb(55Mn,n) has been measured at three projectile energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, 33 decay chains originating from 262Bh and 2 decay chains originating from 261Bh were observed. The measured decay properties are in good agreement with previous reports. The maximum cross section of 540 +180 -150 pb is observed at a lab-frame center-of-target energy of 264.0 MeV and is more than fives times larger than that expected based on previously reported results for production of 262Bh in the analogous even-Z-projectile reaction 209Bi(54Cr,n). Our results indicate that the optimum beam energy in one-neutron-out heavy-ion fusion reactions can be estimated simply using the "Optimum Energy Rule" proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski.
An attempt to confirm production of superheavy elements in the reaction of 48Ca beams with actinide targets has been performed using the 238U(48Ca,3n)283112 reaction. Two 48Ca projectile energies were used, that spanned the energy range where the largest cross sections have been reported for this reaction. No spontaneous fission events were observed. No alpha decay chains consistent with either reported or theoretically predicted element 112 decay properties were observed. The cross section limits reached are significantly smaller than the recently reported cross sections.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.