Skip to main content
Open Access Publications from the University of California

For information about the Group in Logic and the Methodology of Science at UC Berkeley, please visit

Cover page of Choice-free Stone duality

Choice-free Stone duality


The standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this paper, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.

Cover page of On the Logics with Propositional Quantifiers Extending S5Π

On the Logics with Propositional Quantifiers Extending S5Π


Scroggs's theorem on the extensions of S5 is an early landmark in the modern mathematical studies of modal logics. From it, we know that the lattice of normal extensions of S5 is isomorphic to the inverse order of the natural numbers with infinity and that all extensions of S5 are in fact normal. In this paper, we consider extending Scroggs's theorem to modal logics with propositional quantifiers governed by the axioms and rules analogous to the usual ones for ordinary quantifiers. We call them Π-logics. Taking S5Π, the smallest normal Π-logic extending S5, as the natural counterpart to S5 in Scroggs's theorem, we show that all normal Π-logics extending S5Π are complete with respect to their complete simple S5 algebras, that they form a lattice that is isomorphic to the lattice of the open sets of the disjoint union of two copies of the one-point compactification of N, that they have arbitrarily high Turing-degrees, and that there are non-normal Π-logics extending S5Π.

Cover page of The Logic of Comparative Cardinality

The Logic of Comparative Cardinality


This paper investigates the principles that one must add to Boolean algebra to capture reasoning not only about intersection, union, and omplementation of sets, but also about the relative size of sets. We completely axiomatize such reasoning under the Cantorian definition of relative size in terms of injections.

Cover page of Operationalism Meets Modal Logic

Operationalism Meets Modal Logic


Guided by a desire to eliminate language that refers to unobservable structure from mechanics, Ernst Mach proposed a definition of mass in terms of more directly observable data. A great deal of literature surrounds the question of whether this proposed definition accomplishes its stated goal, or even whether it constitutes a definition. In this talk we aim to bring clarity to this debate by using methods from model theory and from modal logic to classify, reconstruct, and evaluate these arguments. In particular, we exhibit a general construction of first-order modal frames for appropriately presented scientific theories with epistemic constraints. These frames allow us to characterize which properties are “modally definable” in the sense of Bressan.

Cover page of Reflection ranks and ordinal analysis

Reflection ranks and ordinal analysis


It is well-known that natural axiomatic theories are well-ordered by consistency strength. However, it is possible to construct descending chains of artificial theories with respect to consistency strength. We provide an explanation of this well-orderness phenomenon by studying a coarsening of the consistency strength order, namely, the $\Pi^1_1$ reflection strength order. We prove that there are no descending sequences of $\Pi^1_1$ sound extensions of $\mathsf{ACA}_0$ in this order. Accordingly, we can attach a rank in this order, which we call reflection rank, to any $\Pi^1_1$ sound extension of $\mathsf{ACA}_0$. We prove that for any $\Pi^1_1$ sound theory $T$ extending $\mathsf{ACA}_0^+$, the reflection rank of $T$ equals the proof-theoretic ordinal of $T$. We also prove that the proof-theoretic ordinal of $\alpha$ iterated $\Pi^1_1$ reflection is $\varepsilon_\alpha$. Finally, we use our results to provide straightforward well-foundedness proofs of ordinal notation systems based on reflection principles.