Skip to main content
Open Access Publications from the University of California

Bond dissociation energies of low-valent lanthanide hydroxides: lower limits from ion-molecule reactions and comparisons with fluorides.

  • Author(s): Parker, Mariah L;
  • Jian, Jiwen;
  • Gibson, John K
  • et al.

Despite that bond dissociation energies (BDEs) are among the most fundamental and relevant chemical properties they remain poorly characterized for most elementary lanthanide hydroxides and halides. Lanthanide ions Ln+ = Eu+, Tm+ and Yb+ are here shown to react with H2O to yield hydroxides LnOH+. Under low-energy conditions such reactions must be exothermic, which implies a lower limit of 499 kJ mol-1 for the Ln+-OH BDEs. This limit is significantly higher than previously reported for YbOH+ and is unexpectedly similar to the BDE for Yb+-F. To explain this apparent anomaly, it is considered feasible that the inefficient hydrolysis reactions observed here in a quadrupole ion trap mass spectrometer may actually be endothermic. More definitive and broad-based evaluations and comparisons require additional and more reliable BDEs and ionization energies for key lanthanide molecules, and/or energies for ligand-exchange reactions like LnF + OH ↔ LnOH + F. The hydroxide results motivated an assessment of currently available lanthanide monohalide BDEs. Among several intriguing relationships is the distinctively higher BDE for neutral LuF versus cationic LuF+, though quantifying this comparison awaits a more accurate value for the anomalously high ionization energy of LuF.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View