A data assimilation algorithm for the subcritical surface quasi-geostrophic equation
Skip to main content
eScholarship
Open Access Publications from the University of California

A data assimilation algorithm for the subcritical surface quasi-geostrophic equation

  • Author(s): Jolly, MS
  • Martinez, VR
  • Titi, ES
  • et al.
Abstract

In this article, we prove that data assimilation by feedback nudging can be achieved for the three-dimensional quasi-geostrophic equation in a simplified scenario using only large spatial scale observables on the dynamical boundary. On this boundary, a scalar unknown (buoyancy or surface temperature of the fluid) satisfies the surface quasi-geostrophic equation. The feedback nudging is done on this two-dimensional model, yet ultimately synchronizes the streamfunction of the three-dimensional flow. The main analytical difficulties are due to the presence of a nonlocal dissipative operator in the surface quasi-geostrophic equation. This is overcome by exploiting a suitable partition of unity, the modulus of continuity characterization of Sobolev space norms, and the Littlewood-Paley decomposition to ultimately establish various boundedness and approximation-of-identity properties for the observation operators.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View