Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Electronic Theses and Dissertations bannerUC Santa Barbara

Applications of the Minimum Sobolev Norm and Associated Fast Algorithms

  • Author(s): Gorman, Christopher Henry
  • Advisor(s): Chandrasekaran, Shivkumar;
  • Yang, Xu
  • et al.
Abstract

This dissertation focuses on the development, implementation, and analysis of fast algorithms for the Minimum Sobolev norm (MSN). The MSN method obtains a unique solution from an underdetermined linear system by minimizing a derivative norm in the appropriate Hilbert space. We obtain fast algorithms by exploiting the inherent structure of the underlying system. After performing an Inverse Discrete Cosine Transform, a small number of additional operations are required. Results show the method performs as well as Chebyshev interpolation when approximating smooth functions and better than a wide variety of smooth Chebyshev filters when attempting to approximate rough functions.

One chapter is devoted to analyzing a stochastic norm estimate which is useful when computing low-rank approximations of matrices. This estimate allows us to compute approximations with relative error close to machine precision, which previously was not possible.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View