Skip to main content
eScholarship
Open Access Publications from the University of California

A space for lattice representation and clustering.

Abstract

Algorithms for quantifying the differences between two lattices are used for Bravais lattice determination, database lookup for unit cells to select candidates for molecular replacement, and recently for clustering to group together images from serial crystallography. It is particularly desirable for the differences between lattices to be computed as a perturbation-stable metric, i.e. as distances that satisfy the triangle inequality, so that standard tree-based nearest-neighbor algorithms can be used, and for which small changes in the lattices involved produce small changes in the distances computed. A perturbation-stable metric space related to the reduction algorithm of Selling and to the Bravais lattice determination methods of Delone is described. Two ways of representing the space, as six-dimensional real vectors or equivalently as three-dimensional complex vectors, are presented and applications of these metrics are discussed. (Note: in his later publications, Boris Delaunay used the Russian version of his surname, Delone.).

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View