- Main
Longitudinal Monitoring of Biofilm Formation via Robust Surface-Enhanced Raman Scattering Quantification of Pseudomonas aeruginosa-Produced Metabolites
Published Web Location
https://doi.org/10.1021/acsami.7b18592Abstract
Detection of bacterial metabolites at low concentrations in fluids with complex background allows for applications ranging from detecting biomarkers of respiratory infections to identifying contaminated medical instruments. Surface-enhanced Raman scattering (SERS) spectroscopy, when utilizing plasmonic nanogaps, has the relatively unique capacity to reach trace molecular detection limits in a label-free format, yet large-area device fabrication incorporating nanogaps with this level of performance has proven difficult. Here, we demonstrate the advantages of using chemical assembly to fabricate SERS surfaces with controlled nanometer gap spacings between plasmonic nanospheres. Control of nanogap spacings via the length of the chemical crosslinker provides uniform SERS signals, exhibiting detection of pyocyanin, a secondary metabolite of Pseudomonas aeruginosa, in aqueous media at concentration of 100 pg·mL-1. When using machine learning algorithms to analyze the SERS data of the conditioned medium from a bacterial culture, having a more complex background, we achieve 1 ng·mL-1 limit of detection of pyocyanin and robust quantification of concentration spanning 5 orders of magnitude. Nanogaps are also incorporated in an in-line microfluidic device, enabling longitudinal monitoring of P. aeruginosa biofilm formation via rapid pyocyanin detection in a medium effluent as early as 3 h after inoculation and quantification in under 9 h. Surface-attached bacteria exposed to a bactericidal antibiotic were differentially less susceptible after 10 h of growth, indicating that these devices may be useful for early intervention of bacterial infections.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-