Skip to main content
eScholarship
Open Access Publications from the University of California

Avoiding negative populations in explicit Poisson tau-leaping

  • Author(s): Cao, Y
  • Gillespie, D T
  • Petzold, L R
  • et al.
Abstract

The explicit tau-leaping procedure attempts to speed up the stochastic simulation of a chemically reacting system by approximating the number of firings of each reaction channel during a chosen time increment tau as a Poisson random variable. Since the Poisson random variable can have arbitrarily large sample values, there is always the possibility that this procedure will cause one or more reaction channels to fire so many times during tau that the population of some reactant species will be driven negative. Two recent papers have shown how that unacceptable occurrence can be avoided by replacing the Poisson random variables with binomial random variables, whose values are naturally bounded. This paper describes a modified Poisson tau-leaping procedure that also avoids negative populations, but is easier to implement than the binomial procedure. The new Poisson procedure also introduces a second control parameter, whose value essentially dials the procedure from the original Poisson tau-leaping at one extreme to the exact stochastic simulation algorithm at the other; therefore, the modified Poisson procedure will generally be more accurate than the original Poisson procedure. (C) 2005 American Institute of Physics.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View