Skip to main content
eScholarship
Open Access Publications from the University of California

Ligand-Free Processable Perovskite Semiconductor Ink.

Abstract

Traditional covalent semiconductors require complex processing methods for device fabrication due to their high cohesive energies. Here, we develop a stable, ligand-free perovskite semiconductor ink that can be used to make patterned semiconductor-based optoelectronics in one step. The perovskite ink is formed via the dissolution of crystals of vacancy-ordered double perovskite Cs2TeX6 (X = Cl-, Br-, I-) in polar aprotic solvents, leading to the stabilization of isolated [TeX6]2- octahedral anions and free Cs+ cations without the presence of ligands. The stabilization of the fundamental perovskite ionic octahedral building blocks in solution creates multifunctional inks with the ability to reversibly transform between the liquid ink and the solid-state perovskite crystalline system in air within minutes. These easily processable inks can be patterned onto various materials via dropcasting, spraying or painting, and stamping, highlighting the crucial role of solvated octahedral complexes toward the rapid formation of phase-pure perovskite structures in ambient conditions.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View