Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

RNA structure adjacent to the attenuation determinant in the 5'-non-coding region influences poliovirus viability.

Creative Commons 'BY' version 4.0 license

In attenuated Sabin strains, point mutations within stem-loop V of the 5'-non-coding region (NCR) reduce neurovirulence and cell-specific cap-independent translation. The stem-loop V attenuation determinants lie within the highly structured internal ribosome entry site. Although stem-loop V Sabin mutations have been proposed to alter RNA secondary structure, efforts to identify such conformational changes have been unsuccessful. A previously described linker-scanning mutation (X472) modified five nucleotides adjacent to the attenuation determinant at nt 480 [for poliovirus (PV) type 1]. Transfection of X472 RNA generated only pseudo-revertants in HeLa (cervical carcinoma) or SK-N-SH (neuroblastoma) cells. Pseudo-revertants from both cell types contained nucleotide changes within the X472 linker. In addition, some neuroblastoma-isolated revertants revealed second site mutations within the pyrimidine-rich region located approximately 100 nt distal to the original lesion. Enzymatic RNA structure probing determined that the X472 linker substitution did not disrupt the overall conformation of stem-loop V but abolished base pairing adjacent to the attenuation determinant. Our analyses correlated increased base pairing proximal to the stem-loop V attenuation determinant with growth of X472 revertant RNAs (measured by northern blot analysis). Potential roles of second site mutations in the pyrimidine-rich region are discussed. In addition, our enzymatic structure probing results are shown on a consensus secondary structure model for stem-loop V of the PV 5'-NCR.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View