Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

An Oxidative Central Metabolism Enables Salmonella to Utilize Microbiota-Derived Succinate

Abstract

The mucosal inflammatory response induced by Salmonella serovar Typhimurium creates a favorable niche for this gut pathogen. Conventional wisdom holds that S. Typhimurium undergoes an incomplete tricarboxylic acid (TCA) cycle in the anaerobic mammalian gut. One change during S. Typhimurium-induced inflammation is the production of oxidized compounds by infiltrating neutrophils. We show that inflammation-derived electron acceptors induce a complete, oxidative TCA cycle in S. Typhimurium, allowing the bacteria to compete with the microbiota for colonization. A complete TCA cycle facilitates utilization of the microbiota-derived fermentation product succinate as a carbon source. S. Typhimurium succinate utilization genes contribute to efficient colonization in conventionally raised mice, but provide no growth advantage in germ-free mice. Mono-association of gnotobiotic mice with Bacteroides, a major succinate producer, restores succinate utilization in S. Typhimurium. Thus, oxidative central metabolism enables S. Typhimurium to utilize a variety of carbon sources, including microbiota-derived succinate.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View