Provable Methods for Training Neural Networks with Sparse Connectivity
Skip to main content
eScholarship
Open Access Publications from the University of California

Provable Methods for Training Neural Networks with Sparse Connectivity

  • Author(s): Sedghi, H
  • Anandkumar, A
  • et al.
Abstract

We provide novel guaranteed approaches for training feedforward neural networks with sparse connectivity. We leverage on the techniques developed previously for learning linear networks and show that they can also be effectively adopted to learn non-linear networks. We operate on the moments involving label and the score function of the input, and show that their factorization provably yields the weight matrix of the first layer of a deep network under mild conditions. In practice, the output of our method can be employed as effective initializers for gradient descent.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View