Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

A Model for Nucleation When Nuclei Are Nonstoichiometric: Understanding the Precipitation of Iron Oxyhydroxide Nanoparticles

Abstract

Despite years of study, quantitative models for the nucleation and growth of metal oxyhydroxide nanoparticles from aqueous solution have remained elusive. The problem is complicated by surface adsorption, which causes the stoichiometry of the nucleus to differ from that of the bulk precipitate and causes the surface tension of the precipitate-water interface to depend upon solution chemistry. Here we present a variation of classical nucleation theory that can accommodate surface adsorption, and apply it to understand the nucleation of β-FeOOH (akaganeite) nanoparticles from aqueous FeCl3 solutions. We use small-angle X-ray scattering (SAXS) to quantify nucleation rates over a range of concentrations (5-200 mM FeCl3) and temperatures (47-80 °C), then apply our model to estimate the critical nucleus size and surface tension at each condition. The surface tension varies from 0.07 J/m2 in 200 mM solutions to 0.16 J/m2 in 5 mM solutions. This behavior indicates that the nuclei contain an excess of Cl- and H+ relative to the ideal FeOOH stoichiometry, and the coadsorption of Cl- and H+ is critical for reducing surface tension into a range where classical nucleation pathways can operate. Furthermore, we find that the surface tension can be roughly estimated from aqueous solubility data alone, which may help to understand systems where surface tension data is unavailable.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View