- Main
A Prime Ideal Principle for Two-Sided Ideals
Abstract
Many classical ring-theoretic results state that an ideal that is maximal with respect to satisfying a special property must be prime. We present a “Prime Ideal Principle” that gives a uniform method of proving such facts, generalizing the Prime Ideal Principle for commutative rings due to T. Y. Lam and the author. Old and new “maximal implies prime” results are presented, with results touching on annihilator ideals, polynomial identity rings, the Artin–Rees property, Dedekind-finite rings, principal ideals generated by normal elements, strongly noetherian algebras, and just infinite algebras.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-