Skip to main content
Open Access Publications from the University of California

Morning Commute with Competing Modes and DistributedDemand: User Equilibrium, System Optimum, and Pricing

  • Author(s): Gonzales, Eric J.
  • Daganzo, Carlos F.
  • et al.

The morning commute problem for a single bottleneck is extended to model mode choice in an urban area with time-dependent demand. This extension recognizes that street space is shared by cars and public transit. It is assumed that transit is operated independently of traffic conditions, and that when it is operated it consumes a fixed amount of space. As a first step, a single fixed-capacity bottleneck that can serve both cars and transit is studied. Commuters choose which mode to use and when to travel in order to minimize the generalized cost of their own trip. The transit agency chooses the headway and when to operate. Transit operations reduce the bottleneck’s capacity for cars by a fixed amount. The following results are shown for this type of bottleneck: 1. If the transit agency charges a fixed fare and operates at a given headway, and only when there is demand, then there is a unique user equilibrium. 2. If the transit agency chooses its headway and time of operation for the common good, then there is a unique system optimum. 3. Time-dependent prices exist to achieve system optimum. Finally, it is also shown that results 2 and 3 apply to urban networks.

Main Content
Current View