Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy

Abstract

We consider challenges that arise in the estimation of the mean outcome under an optimal individualized treatment strategy defined as the treatment rule that maximizes the population mean outcome, where the candidate treatment rules are restricted to depend on baseline covariates. We prove a necessary and sufficient condition for the pathwise differentiability of the optimal value, a key condition needed to develop a regular and asymptotically linear (RAL) estimator of the optimal value. The stated condition is slightly more general than the previous condition implied in the literature. We then describe an approach to obtain root-n rate confidence intervals for the optimal value even when the parameter is not pathwise differentiable. We provide conditions under which our estimator is RAL and asymptotically efficient when the mean outcome is pathwise differentiable. We also outline an extension of our approach to a multiple time point problem. All of our results are supported by simulations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View