Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Efficient compression in color naming and its evolution

Abstract

We derive a principled information-theoretic account of cross-language semantic variation. Specifically, we argue that languages efficiently compress ideas into words by optimizing the information bottleneck (IB) trade-off between the complexity and accuracy of the lexicon. We test this proposal in the domain of color naming and show that (i) color-naming systems across languages achieve near-optimal compression; (ii) small changes in a single trade-off parameter account to a large extent for observed cross-language variation; (iii) efficient IB color-naming systems exhibit soft rather than hard category boundaries and often leave large regions of color space inconsistently named, both of which phenomena are found empirically; and (iv) these IB systems evolve through a sequence of structural phase transitions, in a single process that captures key ideas associated with different accounts of color category evolution. These results suggest that a drive for information-theoretic efficiency may shape color-naming systems across languages. This principle is not specific to color, and so it may also apply to cross-language variation in other semantic domains.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View