Synchronization of Kuramoto Oscillators via Cutset Projections
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Synchronization of Kuramoto Oscillators via Cutset Projections

Abstract

Synchronization in coupled oscillators networks is a remarkable phenomenon of relevance in numerous fields. For Kuramoto oscillators the loss of synchronization is determined by a trade-off between coupling strength and oscillator heterogeneity. Despite extensive prior work, the existing sufficient conditions for synchronization are either very conservative or heuristic and approximate. Using a novel cutset projection operator, we propose a new family of sufficient synchronization conditions; these conditions rigorously identify the correct functional form of the trade-off between coupling strength and oscillator heterogeneity. To overcome the need to solve a nonconvex optimization problem, we then provide two explicit bounding methods, thereby obtaining (i) the best-known sufficient condition for unweighted graphs based on the 2-norm, and (ii) the first-known generally-applicable sufficient condition based on the $\infty$-norm. We conclude with a comparative study of our novel $\infty$-norm condition for specific topologies and IEEE test cases; for most IEEE test cases our new sufficient condition is one to two orders of magnitude more accurate than previous rigorous tests.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View