Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Advanced Retinal Imaging and Ocular Parameters of the Rhesus Macaque Eye.

Abstract

Purpose

To determine the range of normal ocular biometry and perform advanced retinal imaging and functional assessment of the rhesus macaque eye.

Methods

We performed ocular phenotyping on rhesus macaques at the California National Primate Research Center. This process consisted of anterior and posterior segment eye examination by ophthalmologists, advanced retinal imaging, and functional retinal electrophysiology.

Results

Full eye examinations were performed on 142 animals, consisting of pupillary light reflex, tonometry, external examination and photography, anterior slit lamp examination, and posterior segment examination by indirect ophthalmoscopy. Ages of the rhesus macaques ranged from 0.7 to 29 years (mean, 16.4 ± 7.5 years). Anterior segment measurements such as intraocular pressure (n = 142), corneal thickness (n = 84), lens thickness (n = 114), and axial length (n = 114) were acquired. Advanced retinal imaging in the form of fundus photography (n = 78), optical coherence tomography (n = 60), and quantitative autofluorescence (n = 44) was obtained. Electroretinography (n = 75) was used to assay retinal function. Quantitative analyses of the macular structure, retinal layer segmentation, and rod and cone photoreceptor electrical responses are reported. Quantitative assessments were made and variations between sexes were analyzed to compare with established sex changes in human eyes.

Conclusions

The rhesus macaque has an ocular structure and function very similar to that of the human eye. In particular macular structure and retinal function is very similar to humans, making this species particularly useful for the study of macular biology and development of therapies for cone photoreceptor disorders.

Translational relevance

Rhesus macaques are an ideal model for future vision science studies of human eye diseases.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View